Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38671837

RESUMO

Epilepsy, marked by abnormal and excessive brain neuronal activity, is linked to the activation of L-type voltage-gated calcium channels (LTCCs) in neuronal membranes. LTCCs facilitate the entry of calcium (Ca2+) and other metal ions, such as zinc (Zn2+) and magnesium (Mg2+), into the cytosol. This Ca2+ influx at the presynaptic terminal triggers the release of Zn2+ and glutamate to the postsynaptic terminal. Zn2+ is then transported to the postsynaptic neuron via LTCCs. The resulting Zn2+ accumulation in neurons significantly increases the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits, contributing to reactive oxygen species (ROS) generation and neuronal death. Amlodipine (AML), typically used for hypertension and coronary artery disease, works by inhibiting LTCCs. We explored whether AML could mitigate Zn2+ translocation and accumulation in neurons, potentially offering protection against seizure-induced hippocampal neuronal death. We tested this by establishing a rat epilepsy model with pilocarpine and administering AML (10 mg/kg, orally, daily for 7 days) post-epilepsy onset. We assessed cognitive function through behavioral tests and conducted histological analyses for Zn2+ accumulation, oxidative stress, and neuronal death. Our findings show that AML's LTCC inhibition decreased excessive Zn2+ accumulation, reactive oxygen species (ROS) production, and hippocampal neuronal death following seizures. These results suggest amlodipine's potential as a therapeutic agent in seizure management and mitigating seizures' detrimental effects.

2.
Neurotherapeutics ; 21(4): e00357, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631990

RESUMO

Epilepsy, a complex neurological disorder, is characterized by recurrent seizures caused by aberrant electrical activity in the brain. Central to this study is the role of lysosomal dysfunction in epilepsy, which can lead to the accumulation of toxic substrates and impaired autophagy in neurons. Our focus is on phosphodiesterase-4 (PDE4), an enzyme that plays a crucial role in regulating intracellular cyclic adenosine monophosphate (cAMP) levels by converting it into adenosine monophosphate (AMP). In pathological states, including epilepsy, increased PDE4 activity contributes to a decrease in cAMP levels, which may exacerbate neuroinflammatory responses. We hypothesized that amlexanox, an anti-inflammatory drug and non-selective PDE4 inhibitor, could offer neuroprotection by addressing lysosomal dysfunction and mitigating neuroinflammation, ultimately preventing neuronal death in epileptic conditions. Our research utilized a pilocarpine-induced epilepsy animal model to investigate amlexanox's potential benefits. Administered intraperitoneally at a dose of 100 â€‹mg/kg daily following the onset of a seizure, we monitored its effects on lysosomal function, inflammation, neuronal death, and cognitive performance in the brain. Tissue samples from various brain regions were collected at predetermined intervals for a comprehensive analysis. The study's results were significant. Amlexanox effectively improved lysosomal function, which we attribute to the modulation of zinc's influx into the lysosomes, subsequently enhancing autophagic processes and decreasing the release of inflammatory factors. Notably, this led to the attenuation of neuronal death in the hippocampal region. Additionally, cognitive function, assessed through the modified neurological severity score (mNSS) and the Barnes maze test, showed substantial improvements after treatment with amlexanox. These promising outcomes indicate that amlexanox has potential as a therapeutic agent in the treatment of epilepsy and related brain disorders. Its ability to combat lysosomal dysfunction and neuroinflammation positions it as a potential neuroprotective intervention. While these findings are encouraging, further research and clinical trials are essential to fully explore and validate the therapeutic efficacy of amlexanox in epilepsy management.

3.
World J Mens Health ; 42(1): 62-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38171377

RESUMO

Cancer cells, which divide indefinitely and without control, are frequently exposed to various stress factors but manage to adapt and survive. The mechanisms by which cancer cells maintain cellular homeostasis and exploit stress conditions are not yet clear. Here, we elucidate the roles of diverse cellular metabolism and its regulatory mechanisms, highlighting the essential role of metabolism in cellular composition and signal transduction. Cells respond to various stresses, including DNA damage, energy stress, and oxidative stress, thereby causing metabolic alteration. We provide profound insight into the adaptive mechanisms employed by cancer cells to ensure their survival among internal and external stressors through a comprehensive analysis of the correlation between metabolic alterations and cellular stress. Furthermore, this research establishes a robust framework for the development of innovative therapeutic strategies that specifically target the cellular adaptations of cancer cells.

4.
Light Sci Appl ; 12(1): 281, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996403

RESUMO

We, for the first time, report the nanoscopic imaging study of anomalous infrared (IR) phonon enhancement of bilayer graphene, originated from the charge imbalance between the top and bottom layers, resulting in the enhancement of E1u mode of bilayer graphene near 0.2 eV. We modified the multifrequency atomic force microscope platform to combine photo-induced force microscope with electrostatic/Kelvin probe force microscope constituting a novel hybrid nanoscale optical-electrical force imaging system. This enables to observe a correlation between the IR response, doping level, and topographic information of the graphene layers. Through the nanoscale spectroscopic image measurements, we demonstrate that the charge imbalance at the graphene interface can be controlled by chemical (doping effect via Redox mechanism) and mechanical (triboelectric effect by the doped cantilever) approaches. Moreover, we can also diagnosis the subsurface cracks on the stacked few-layer graphene at nanoscale, by monitoring the strain-induced IR phonon shift. Our approach provides new insights into the development of graphene-based electronic and photonic devices and their potential applications.

5.
Molecules ; 28(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375202

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer-RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , Ligação Proteica
6.
Kidney Int ; 104(1): 163-180, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088425

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disorder characterized by autoreactive B cells and dysregulation of many other types of immune cells including myeloid cells. Lupus nephritis (LN) is a common target organ manifestations of SLE. Tonicity-responsive enhancer-binding protein (TonEBP, also known as nuclear factor of activated T-cells 5 (NFAT5)), was initially identified as a central regulator of cellular responses to hypertonic stress and is a pleiotropic stress protein involved in a variety of immunometabolic diseases. To explore the role of TonEBP, we examined kidney biopsy samples from patients with LN. Kidney TonEBP expression was found to be elevated in these patients compared to control patients - in both kidney cells and infiltrating immune cells. Kidney TonEBP mRNA was elevated in LN and correlated with mRNAs encoding inflammatory cytokines and the degree of proteinuria. In a pristane-induced SLE model in mice, myeloid TonEBP deficiency blocked the development of SLE and LN. In macrophages, engagement of various toll-like receptors (TLRs) that respond to damage-associated molecular patterns induced TonEBP expression via stimulation of its promoter. Intracellular signaling downstream of the TLRs was dependent on TonEBP. Therefore, TonEBP can act as a transcriptional cofactor for NF-κB, and activated mTOR-IRF3/7 via protein-protein interactions. Additionally, TonEBP-deficient macrophages displayed elevated efferocytosis and animals with myeloid deficiency of TonEBP showed reduced Th1 and Th17 differentiation, consistent with macrophages defective in TLR signaling. Thus, our data show that myeloid TonEBP may be an attractive therapeutic target for SLE and LN.


Assuntos
Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Animais , Camundongos , Rim , Transdução de Sinais , Macrófagos , Fatores de Transcrição NFATC
7.
J Microbiol Biotechnol ; 32(9): 1154-1167, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36039041

RESUMO

In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aß1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aß-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aß and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1ß. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aß1-42-induced cognitive impairment in mice.


Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Pinus , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Acetilcolinesterase/metabolismo , Trifosfato de Adenosina/metabolismo , Peptídeos beta-Amiloides , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/farmacologia , Colinérgicos/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Glutationa/metabolismo , Malondialdeído/metabolismo , Malondialdeído/farmacologia , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Casca de Planta , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , República da Coreia , Superóxido Dismutase/metabolismo , Sinaptofisina/metabolismo , Sinaptofisina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
8.
Mar Drugs ; 20(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736158

RESUMO

Advanced glycation end-products (AGEs) play a vital role in the pathogenesis of diabetic complications. Methylglyoxal (MGO), one of the major precursors of AGEs, is a highly reactive dicarbonyl compound that plays an important role in the pathogenesis of diabetic nephropathy. This study was designed to evaluate the therapeutic potential of phlorotannin-rich Ecklonia cava extract (ECE) on MGO-induced diabetic nephropathy in in vitro models using mouse glomerular mesangial cells. ECE showed anti-glycation activity via breaking of AGEs-collagen cross-links and inhibition of AGEs formation and AGE-collagen cross-linking formation. The renoprotective effects were determined by assessing intracellular reactive oxygen species (ROS) and MGO accumulation, cell apoptosis, and the Nrf-2/ARE signaling pathway. MGO-induced renal damage, intracellular ROS production level, and MGO-protein adduct accumulation were significantly decreased by pretreating ECE. Moreover, ECE pretreatment exhibited preventive properties against MGO-induced dicarbonyl stress via activation of the Nrf2/ARE signaling pathway and reduction of RAGE protein expression in mouse glomerular mesangial cells. Collectively, these results indicated potential anti-glycation properties and prominent preventive effects of ECE against MGO-induced renal damage. Additionally, ECE may be utilized for the management of AGE-related diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Animais , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Óxido de Magnésio , Camundongos , Aldeído Pirúvico/toxicidade , Espécies Reativas de Oxigênio/metabolismo
9.
ACS Nano ; 16(6): 9871-9882, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35666252

RESUMO

Wrinkled graphene offers many advantageous features resulting from modifying the structural and physical properties as well as the chemical reactivity of graphene. However, its inadequate transferability to other substrates has limited its usability. This paper reports a roll-based clean transfer approach that enables the damage-free and contamination-free transfer of large-area wrinkled graphene onto polymeric substrates without compromising the integrity of wrinkle structures. The method implements the simultaneous imidazole-assisted etching and doping of chemical vapor-deposited graphene to fabricate multilayer graphene on a thermoplastic polystyrene (PS) substrate coated with a water-soluble poly(4-styrenesulfonic acid) (PSS) sacrificial layer via a roll-based transfer process. The compliant PSS layer affords the conformal contact between the PS substrate and graphene during the wrinkle formation process, enabling the controllable fabrication of graphene wrinkle structures on a large area. The water-soluble properties of PSS simplify the typically difficult separation of wrinkled graphene from the PS substrate after its transfer onto a target substrate. This improves the transferability of wrinkled graphene, rendering the transfer process solvent-free and residue-free. This work demonstrates the feasibility of the formulated method by transferring centimeter-scale wrinkled graphene onto currently used transparent flexible substrates (i.e., polyethylene terephthalate and polydimethylsiloxane). The results indicate that the transferred wrinkled graphene possesses the desirable combination of superior stretchability, optical transmittance, sheet resistance, and electromechanical stability, rendering its suitable application to transparent flexible and stretchable electronics.

10.
Food Chem ; 373(Pt B): 131364, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34731796

RESUMO

This study shows the inhibitory effect of sea buckthorn (Hippophae rhamnoides L.) extracts, sea buckthorn leaf (HRL) and berry (HRB), on the formation of advanced glycation endproducts (AGEs), closely linked to diverse disease. In vitro assay revealed the superior inhibitory effect of HRL on the AGEs formation and AGEs-induced collagen crosslinking compared with that of HRB. Ultra-performance liquid chromatography-mass spectrometry results revealed that HRL displays a higher inhibition efficiency on the AGEs formation at 30 AGEs binding sites in bovine serum albumin than HRB. The high concentration of 3-sophoroside-7-rhamnoside in HRL compared with that in HRB may result in the strong inhibitory effect of HRL compared with that of HRB. HRL also exhibited significantly higher ABTS and DPPH radical scavenging activities than HRB. Overall, this study demonstrated that HRL has excellent potential as a dietary agent for controlling various diseases mediated by AGEs and oxidative stress.


Assuntos
Hippophae , Antioxidantes , Frutas , Produtos Finais de Glicação Avançada , Extratos Vegetais
11.
Sensors (Basel) ; 21(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668211

RESUMO

The electrochemical-based detection of uric acid (UA) is widely used for diagnostic purposes. However, various interfering species such as ascorbic acid, dopamine, and glucose can affect electrochemical signals, and hence there is an outstanding need to develop improved sensing platforms to detect UA with high selectivity. Herein, we report a pentagonal mediator-based non-enzymatic electrochemical biosensing platform to selectively measure UA in the presence of interfering species. The working electrode was fabricated by electrodepositing polymerized 1-vinylimidazole (PVI), which has an imidazole ligand, onto indium tin oxide (ITO), and then conjugating nickel ions to the PVI-coated ITO electrode. Electrode performance was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements and integrated together with pentacyanoammineferrate, which can bind to the amine groups of UA and function as an electron transferring mediator. The experimental results showed a wide linear range of UA concentration-dependent responses and the multi-potential step (MPS) technique facilitated selective detection of UA in the presence of physiologically relevant interfering species. Altogether, these findings support that pentacyanoammineferrate-based non-enzymatic electrodes are suitable biosensing platforms for the selective measurement of UA, and such approaches could potentially be extended to other bioanalytes as well.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ferrocianetos/química , Ácido Úrico/análise , Eletrodos
12.
Sci Rep ; 11(1): 1165, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441855

RESUMO

Due to their important phylogenetic position among extant vertebrates, sharks are an invaluable group in evolutionary developmental biology studies. A thorough understanding of shark anatomy is essential to facilitate these studies and documentation of this iconic taxon. With the increasing availability of cross-sectional imaging techniques, the complicated anatomy of both cartilaginous and soft tissues can be analyzed non-invasively, quickly, and accurately. The aim of this study is to provide a detailed anatomical description of the normal banded houndshark (Triakis scyllium) using computed tomography (CT) and magnetic resonance imaging (MRI) along with cryosection images. Three banded houndsharks were scanned using a 64-detector row spiral CT scanner and a 3 T MRI scanner. All images were digitally stored and assessed using open-source Digital Imaging and Communications in Medicine viewer software in the transverse, sagittal, and dorsal dimensions. The banded houndshark cadavers were then cryosectioned at approximately 1-cm intervals. Corresponding transverse cryosection images were chosen to identify the best anatomical correlations for transverse CT and MRI images. The resulting images provided excellent detail of the major anatomical structures of the banded houndshark. The illustrations in the present study could be considered as a useful reference for interpretation of normal and pathological imaging studies of sharks.


Assuntos
Tubarões/anatomia & histologia , Anatomia Transversal/métodos , Animais , Imageamento por Ressonância Magnética/métodos , Tomógrafos Computadorizados , Tomografia Computadorizada por Raios X/métodos
13.
Commun Biol ; 4(1): 91, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33469155

RESUMO

Total internal reflection fluorescence (TIRF) microscopy, which has about 100-nm axial excitation depth, is the method of choice for nanometer-sectioning imaging for decades. Lately, several new imaging techniques, such as variable angle TIRF microscopy, supercritical-angle fluorescence microscopy, and metal-induced energy transfer imaging, have been proposed to enhance the axial resolution of TIRF. However, all of these methods use high numerical aperture (NA) objectives, and measured images inevitably have small field-of-views (FOVs). Small-FOV can be a serious limitation when multiple cells need to be observed. We propose large-FOV nanometer-sectioning microscopy, which breaks the complementary relations between the depth of focus and axial sectioning by using MIET. Large-FOV imaging is achieved with a low-magnification objective, while nanometer-sectioning is realized utilizing metal-induced energy transfer and biexponential fluorescence lifetime analysis. The feasibility of our proposed method was demonstrated by imaging nanometer-scale distances between the basal membrane of human aortic endothelial cells and a substrate.


Assuntos
Microscopia de Fluorescência/métodos , Microscopia de Interferência/métodos , Imagem Óptica/métodos , Células Endoteliais , Transferência de Energia , Fluorescência , Corantes Fluorescentes , Humanos
14.
J Microbiol Biotechnol ; 31(1): 51-62, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33046678

RESUMO

Here, we investigated the prebiotic and antioxidant effects of Actinidia arguta sprout water extract (AASWE) on lipopolysaccharide (LPS)-induced cognitive deficit mice. AASWE increased viable cell count, titratable acidity, and acetic acid production in Lactobacillus reuteri strain and showed a cytoprotective effect on LPS-induced inflammation in HT-29 cells. We assessed the behavior of LPSinduced cognitive deficit mice using Y-maze, passive avoidance and Morris water maze tests and found that administration of AASWE significantly improved learning and memory function. The AASWE group showed antioxidant activity through downregulation of malondialdehyde levels and upregulation of superoxide dismutase levels in brain tissue. In addition, the AASWE group exhibited activation of the cholinergic system with decreased acetylcholinesterase activity in brain tissue. Furthermore, AASWE effectively downregulated inflammatory mediators such as phosphorylated- JNK, phosphorylated-NF-κB, TNF-α and interleukin-6. The major bioactive compounds of AASWE were identified as quercetin-3-O-arabinopyranosyl(1→2)-rhamnopyranosyl(1→6)-glucopyranose, quercetin-3-O-apiosyl(1→2)-galactoside, rutin, and 3-caffeoylquinic acid. Based on these results, we suggest that AASWE not only increases the growth of beneficial bacteria in the intestines, but also shows an ameliorating effect on LPS-induced cognitive impairment.


Assuntos
Actinidia/química , Antioxidantes/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Células HT29 , Humanos , Inflamação/tratamento farmacológico , Interleucina-6 , Limosilactobacillus reuteri , Masculino , Camundongos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Superóxido Dismutase
15.
Tuberc Respir Dis (Seoul) ; 83(3): 201-210, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32578408

RESUMO

BACKGROUND: North Korea is one of the 30 countries with the highest tuberculosis (TB) and drug-resistant TB burdened. To understand the medical issues and research trends associated with TB in North Korea, we performed a comprehensive review of articles related to clinical and laboratory research on TB published in North Korean medical journals. METHODS: We reviewed all types of TB-related articles published in nine North Korean medical journals (Yebang uihak: Preventive medicine; Koryo uihak: Korea Medicine; Choson uihak: Chosun Medicine; Naekwa: Internal Medicine; Soa, sanbuinkwa: Pediatrics, Obstetrics, and Gynecology, Surgery; Uihak: Medicine; Kich'o uihak: Basic Medicine; and Choson yakhak: Chosun Pharmacy). We classified the articles according to the type and field of study and analyzed the data qualitatively to gain insights. RESULTS: We reviewed 106 articles (one- or two-page length) written in Korean, including reviews (n=43), original articles (n=52), and case reports (n=8). They were classified as follows: articles on diagnosis (n=52, 49%) and treatment (n=39, 37%). None of the studies investigated the commercialized molecular diagnosis systems such as Xpert MTB/RIF. Directly Observed Treatment, Short-course was reported as the basic treatment approach. Furthermore, six studies used Korean traditional medicines for treating TB, with one of them containing snake venom. CONCLUSION: The articles were not sufficiently detailed. Original articles on the treatment of multi-drug resistant TB were not found, and those on latent tuberculosis infection and nontuberculous mycobacteria were limited. To understand the current medical issues associated with TB in North Korea, articles from these nine journals were not sufficient.

16.
Ann Rehabil Med ; 44(2): 109-116, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32392649

RESUMO

OBJECTIVE: To determine the factors affecting the amount of weight-bearing during gait training in the elderly patients who underwent internal fixation after femur or pelvic fractures and how well they performed the weight-bearing restriction as directed by the physiatrist. METHODS: In this retrospective chart review study, we measured the amount of weight-bearing on the affected side in 50 patients undergoing internal fixation surgery and rehabilitation after femur or pelvic fracture using a force plate. Patients receiving non-weight-bearing or partial weight-bearing education were considered to perform weight-bearing restriction well when the amount of weight-bearing was <50 lb. Furthermore, regression analysis was performed to determine the effects of postoperative complications, age, cognitive function, and pain on weightbearing restriction. RESULTS: Variables affecting the amount of weight-bearing were age (r=0.581, p<0.001), weight-bearing education type (r=0.671, p<0.001), manual muscle strength of hip flexion on the non-affected side (r=-0.296, p=0.037), hip abduction (r=-0.326, p=0.021), knee extension (r=-0.374, p=0.007), ankle plantar flexion (r=-0.374, p=0.008), right hand grip strength (r=-0.535, p<0.001), Korean version of Mini-Mental State Examination (r=-0.496, p<0.001), Clinical Dementia Rating (r=0.308, p=0.03), and pain visual analog scale scores (r=0.318, p=0.024). The significant predictor of the amount of weight-bearing among these variables was age (ß=0.448, p=0.001). The weight-bearing restriction adherence rate was significantly lower, at 22%, for patients aged ≥65 years as compared to 73% for those <65 years. CONCLUSION: Age was a major variable affecting the amount of weight-bearing. Compliance with weight-bearing restriction was significantly lower in patients aged ≥65 years than in patients <65 years.

17.
Oxid Med Cell Longev ; 2019: 7849876, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31210848

RESUMO

An ethyl acetate fraction from Aralia elata (AEEF) was investigated to confirm its neuronal cell protective effect on ethanol-induced cytotoxicity in MC-IXC cells and its ameliorating effect on neurodegeneration in chronic alcohol-induced mice. The neuroprotective effect was examined by methylthiazolyldiphenyl-tetrazolium bromide (MTT) and 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) assays. As a result, AEEF reduced alcohol-induced cytotoxicity and oxidative stress. To evaluate the improvement of learning, memory ability, and spatial cognition, Y-maze, passive avoidance, and Morris water maze tests were conducted. The AEEF groups showed an alleviation of the decrease in cognitive function in alcohol-treated mice. Then, malondialdehyde (MDA) levels and the superoxide dismutase (SOD) content were measured to evaluate the antioxidant effect of AEEF in the brain tissue. Treatment with AEEF showed a considerable ameliorating effect on biomarkers such as SOD and MDA content in alcohol-induced mice. To assess the cerebral cholinergic system involved in neuronal signaling, acetylcholinesterase (AChE) activity and acetylcholine (ACh) content were measured. The AEEF groups showed increased ACh levels and decreased AChE activities. In addition, AEEF prevented alcohol-induced neuronal apoptosis via improvement of mitochondrial activity, including reactive oxygen species levels, mitochondrial membrane potential, and adenosine triphosphate content. AEEF inhibited apoptotic signals by regulating phosphorylated c-Jun N-terminal kinases (p-JNK), phosphorylated protein kinase B (p-Akt), Bcl-2-associated X protein (BAX), and phosphorylated Tau (p-Tau). Finally, the bioactive compounds of AEEF were identified as caffeoylquinic acid (CQA), 3,5-dicaffeoylquinic acid (3,5-diCQA), and chikusetsusaponin IVa using the UPLC-Q-TOF-MS system.


Assuntos
Transtornos do Sistema Nervoso Induzidos por Álcool/tratamento farmacológico , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Aralia/química , Encéfalo/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Acetatos/química , Transtornos do Sistema Nervoso Induzidos por Álcool/metabolismo , Transtornos do Sistema Nervoso Induzidos por Álcool/patologia , Animais , Antioxidantes/química , Encéfalo/patologia , Linhagem Celular , Doença Crônica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Neurônios/patologia , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo
18.
ACS Appl Mater Interfaces ; 10(37): 31480-31487, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30105909

RESUMO

We fabricated MoS2-based flash memory devices by stacking MoS2 and hexagonal boron nitride (hBN) layers on an hBN/Au substrate and demonstrated that these devices can emulate various biological synaptic functions, including potentiation and depression processes, spike-rate-dependent plasticity, and spike-timing dependent plasticity. In particular, compared to a flash memory device prepared on an hBN substrate, the device fabricated on the hBN/Au exhibited considerably more symmetric and linear bidirectional gradual conductance change curves, which may be attributed to the device structure incorporating double floating gate. For the device on the hBN/Au, electron transfers may occur between the floating gate MoS2 and Au, as well as between the floating gate MoS2 and the channel MoS2, allowing for more control over electron tunneling and injection. To test our hypothesis, we also fabricated a MoS2-based flash memory device on an hBN/Pd substrate and found behavior similar to the device fabricated on hBN/Au. Our results demonstrate that flexible synaptic electronics may be implemented using MoS2-based flash memory devices with double floating gates.

19.
Food Res Int ; 105: 589-598, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29433251

RESUMO

The ameliorating effects of the ethyl acetate fraction from Hibiscus sabdariffa L. (EFHS)2 against diabetes mellitus (DM)3 and DM-induced cognitive impairment were investigated on streptozotocin (STZ)4-induced DM mice. The EFHS groups showed improved hyperglycemia and glucose tolerance compared to the STZ group. Furthermore, their liver and kidney function and lipid metabolic imbalance in the blood serum were effectively recovered. The EFHS groups significantly ameliorated STZ-induced cognitive impairment in Y-maze, passive avoidance, and Morris water maze (MWM)5 tests. The EFHS groups showed significant improvement in the antioxidant and cholinergic systems of the brain tissue. In addition, EFHS had an excellent ameliorating effect on protein expression levels from the tau hyperphosphorylation pathways, such as phospho-c-Jun N-terminal kinases (p-JNK),6 phospho-tau (p-tau),7 and cleaved poly (ADP-ribose) polymerase (c-PARP).8 The main compounds of EFHS were identified as various phenolic compounds, including hibiscus acid, caffeoylquinic acid (CQA)9 isomers, and quercetin derivates. Therefore, EFHS containing various physiologically active materials can potentially be used for improving DM-induced cognitive impairment via its antioxidant activity, improvement of the cholinergic system, and hyperphosphorylation tau signaling.


Assuntos
Acetatos/química , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/prevenção & controle , Cognição/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Hibiscus , Hipoglicemiantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Solventes/química , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Proteínas Ligadas por GPI/metabolismo , Hibiscus/química , Hipoglicemiantes/isolamento & purificação , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipídeos/sangue , Masculino , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/isolamento & purificação , Fosforilação , Extratos Vegetais/isolamento & purificação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas tau/metabolismo
20.
Sci Rep ; 7: 45583, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28349928

RESUMO

Triboelectric energy harvesting has been applied to various fields, from large-scale power generation to small electronics. Triboelectric energy is generated when certain materials come into frictional contact, e.g., static electricity from rubbing a shoe on a carpet. In particular, textile-based triboelectric energy-harvesting technologies are one of the most promising approaches because they are not only flexible, light, and comfortable but also wearable. Most previous textile-based triboelectric generators (TEGs) generate energy by vertically pressing and rubbing something. However, we propose a corrugated textile-based triboelectric generator (CT-TEG) that can generate energy by stretching. Moreover, the CT-TEG is sewn into a corrugated structure that contains an effective air gap without additional spacers. The resulting CT-TEG can generate considerable energy from various deformations, not only by pressing and rubbing but also by stretching. The maximum output performances of the CT-TEG can reach up to 28.13 V and 2.71 µA with stretching and releasing motions. Additionally, we demonstrate the generation of sufficient energy from various activities of a human body to power about 54 LEDs. These results demonstrate the potential application of CT-TEGs for self-powered systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA